Table OCR Benchmark

Benchmark comparing Aspose.OCR, Leadtools.OCR, and IronOCR table recognition capabilities on 123 table images. Results show average structure detection and text recognition accuracy.

Benchmark Overview

This benchmark compares Aspose.OCR, Leadtools.OCR, and IronOCR on 123 table images. All metrics shown are average values across the dataset.

Summary Results (Average Across 123 Images)



Metric
Aspose.OCR
Leadtools.OCR
IronOCR
Structure Detection Accuracy
82.00%
2.40%
19.40%
Text Recognition Accuracy
79.10%
63.90%
42.10%


Detailed Results



Engine
Expected Rows/Columns
Detected Rows
Detected Columns
Structure Accuracy
Correct Cells
Text Accuracy
Aspose
19 × 7
18
7
82%
59/78
79%
Leadtools
19 × 7
668
2
2.40%
40/78
64%
IronOCR
19 × 7
9
2
19.40%
2/78
42%


Example: Table Recognition Comparison

This example demonstrates how different OCR engines recognize the same table structure.

Original Table

Original table structure

Original Table
Aspose.OCR - Correctly structured table with accurate text recognition

Aspose.OCR recognition result

Aspose Table OCR
IronOCR - Text recognized but table structure lost (data collapsed into single column)

IronOCR recognition result

IronOCR Table OCR
Leadtools.OCR - Poor structure detection, data scattered across cells

Leadtools.OCR recognition result

Leadtools Table OCR

Easy to use Aspose.OCR API

Aspose OCR API simplifies text extraction by handling image analysis and processing automatically, letting users focus on their core tasks—just provide an image and and leave the rest to the API.

Convert image to text

/** Initialize recognition API */
AsposeOcr api = new AsposeOcr();

/** Provide the image for recognition */
OcrInput source = new OcrInput(InputType.SingleImage);
source.Add("image.png");

/** Recognize and output results */
List<RecognitionResult> results = api.Recognize(source);
Console.WriteLine(results[0].RecognitionText);
C# C++ Java JavaScript Node.js Python via .NET